Shannon Entropy Based Time-Dependent Deterministic Sampling for Efficient "On-the-Fly" Quantum Dynamics and Electronic Structure.
نویسندگان
چکیده
A new set of time-dependent deterministic sampling (TDDS) measures, based on local Shannon entropy, are presented to adaptively gauge the importance of various regions on a potential energy surface and to be employed in "on-the-fly" quantum dynamics. Shannon sampling and Shannon entropy are known constructs that have been used to analyze the information content in functions: for example, time-series data and discrete data sets such as amino acid sequences in a protein structure. Here the Shannon entropy, when combined with dynamical parameters such as the instantaneous potential, gradient and wavepacket density provides a reliable probe on active regions of a quantum mechanical potential surface. Numerical benchmarks indicate that the methods proposed are highly effective in locating regions of the potential that are both classically allowed as well as those that are classically forbidden, such as regions beyond the classical turning points which may be sampled during a quantum mechanical tunneling process. The approaches described here are utilized to improve computational efficiency in two different settings: (a) It is shown that the number of potential energy calculations required to be performed during on-the-fly quantum dynamics is fewer when the Shannon entropy based sampling functions are used. (b) Shannon entropy based TDDS functions are utilized to define a new family of grid-based electronic structure basis functions that reduce the computational complexity while maintaining accuracy. The role of both results for on-the-fly quantum/classical dynamics of electrons and nuclei is discussed.
منابع مشابه
Quantum current modelling on tri-layer graphene nanoribbons in limit degenerate and non-degenerate
Graphene is determined by a wonderful carrier transport property and high sensitivityat the surface of a single molecule, making them great as resources used in Nano electronic use.TGN is modeled in form of three honeycomb lattices with pairs of in-equivalent sites as {A1, B1},{A2, B2}, and {A3, B3} which are located in the top, center and bottom layers, respectively. Trilayer...
متن کاملQuantum wavepacket ab initio molecular dynamics: generalizations using an extended Lagrangian treatment of diabatic states coupled through multireference electronic structure.
We present a generalization to our previously developed quantum wavepacket ab initio molecular dynamics (QWAIMD) method by using multiple diabatic electronic reduced single particle density matrices, propagated within an extended Lagrangian paradigm. The Slater determinantal wavefunctions associated with the density matrices utilized may be orthogonal or nonorthogonal with respect to each other...
متن کاملA New Model for Best Customer Segment Selection Using Fuzzy TOPSIS Based on Shannon Entropy
In today’s competitive market, for a business firm to win higher profit among its rivals, it is of necessity to evaluate, and rank its potential customer segments to improve its Customer Relationship Management (CRM). This brings the importance of having more efficient decision making methods considering the current fast growing information era. These decisions usually involve several criteria,...
متن کاملDifferential entropy and time
We give a detailed analysis of the Gibbs-type entropy notion and its dynamical behavior in case of time-dependent continuous probability distributions of varied origins: related to classical and quantum systems. The purpose-dependent usage of conditional Kullback-Leibler and Gibbs (Shannon) entropies is explained in case of non-equilibrium Smoluchowski processes. A very different temporal behav...
متن کاملComputational Improvements to Quantum Wave Packet ab Initio Molecular Dynamics Using a Potential-Adapted, Time-Dependent Deterministic Sampling Technique.
In a recent publication, we introduced a computational approach to treat the simultaneous dynamics of electrons and nuclei. The method is based on a synergy between quantum wave packet dynamics and ab initio molecular dynamics. Atom-centered density-matrix propagation or Born-Oppenheimer dynamics can be used to perform ab initio dynamics. In this paper, wave packet dynamics is conducted using a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical theory and computation
دوره 7 2 شماره
صفحات -
تاریخ انتشار 2011